

Gestión global de la seguridad de productos químicos. ¿Se aplica REACH globalment? 2 de Febrero 2018, ICEX España Exportación e Inversiones

Chemical Substance Control Law; CSCL Japan

Takahiro Suzuki
Product Safety and Regulations Manager
Kao Corporation, S.A.

Topics

1. What is Chemical Substance Control Law?

- CSCL in Detail
 - -Safety Studies
 - -Risk Assessment
 - -Polymer Flow Scheme
- 3. Summary -in comparison with REACH-

Topics

1. What is Chemical Substance Control Law?

- 2. CSCL in Detail
 - -Safety Studies
 - -Risk Assessment
 - -Polymer Flow Scheme
- 3. Summary -in comparison with REACH-

Brief Overview of Chemical Laws in Japan

Purpose and Scope of CSCL

Purpose

To prevent environmental pollution caused by chemical substances that pose a risk of impairing human health and interfere with the inhabitation and or growth of flora and fauna.

Scope

Chemical substances

Chemical substance created through chemical reactions.

Industrial chemicals

Chemicals that are subject to other laws such as medicines, cosmetics and pesticides etc. are outside the scope of CSCL.

Outline

New chemicals

Notification to and evaluation by the government are required before manufacture/import.

Existing chemicals

Annual report of manufacture/import volume and usage is mandatory. The government conducts risk assessment based in this annual notification and may request additional toxicity information to the manufactures/importers if necessary.

If the chemicals are already listed in CSCL inventory, no new notification is required.

New Notification is necessary?

Overview of CSCL

The Japanese government conducts <u>risk assessment</u> in two phases, <u>both before and after</u> placing the substance on the market.

Based on the result of risk assessment, the government may take measures to control risks associated with the chemical.

Placing on the market Class I specified Chemicals, 31 Substances **New Chemicals** (persistent, bio-accumulative, and toxic) Premarketing Notification > 1 ton/y **Monitoring Chemicals**, 37 Substances **Evaluation** +Risk (persistent and bio-accumulative) Assessment Less than 1 ton/y **Class II Specified Chemicals,** Persistent but not bioaccumulative 23 Substances Intermediates in 1-10 tonnage band Risk (toxic and high risk) Export etc. **Assessment Priority Assessment Chemicals, Polymer of Low** 201 Substances Concern (PLC) **General Chemicals (+Existing chemicals),** Approx. 28,000 Substances **Premarketing Confirmation** (the substance can be placed on the market)

Numbers are as of Jan. 8th 2018

http://www.nite.go.jp/en/chem/kasinn/lists.html

Evaluation / Assessment Flow

Topics

1. What is Chemical Substance Control Law?

- 2. CSCL in Detail
 - -Safety Studies
 - -Risk Assessment
 - -Polymer Flow Scheme

3. Summary -in comparison with REACH-

Evaluation / Assessment Flow

Evaluation / Assessment Flow

11

Flow of Safety tests (>1 ton/y)

These results are considered for screening assessment

-Chromosomal aberration test OECD TG 473 or 476

*If BCF value exceeds 1,000, other information such as discharge rate is considered.

-Acute fish toxicity test OECD TG 203

Biodegradation-OECD 301C-

Biodegradation OECD TG 301C

The most stringent test condition in OECD 301 Series

Reason 1: Test concentration and sludge

Test concentration: 100 mg/L

Inoculum concentration: 30 mg/L

Inoculum: Collect fresh samples from no fewer than 10 sites, mainly in areas where a variety of chemicals are used and discharged. From site such as sewage treatment works, rivers, lakes, seas, sludges, etc. and mix through together

Biodegradation-Inoculum-

From our experience, the degradation activity of the sludge is lower than the sludges from WWTP

Biodegradation-Criteria-

Reason 2: Judgment criteria of ready (good) biodegradation

In at least 2 out of 3 vessels, BOD degradation (%) must be >60%, and the average BOD degradation (%) must be >60%

No parent chemicals, or metabolites are remained (confirmed by HPLC or GC)

Besides of BOD and DOC, chemical analysis must be conducted to quantify the parent substance and identify and quantify metabolites

Biodegradation-Other Methods-

OECD 302C

Even if criteria for OECD 301C are not met, but the data suggests the biodegradation continues after 28 days (e.g. degradation curve are increasing), the judgment can be made by OECD 302C

Test concentration: 30 mg/L Inoculum concentration: 100 mg/L

OECD 301D

If the substance is highly volatile, 301D could be conducted

Test concentration: 2-5 mg/L Inoculum concentration: less than 5 ml of effluent/L

Implementation of OECD 301F

The discussion is still on-going including following topics

- -OECD 301F should be included in CSCL?
- -Protocol of OECD 301F should be modified for CSCL?
- -Protocol of OECD 301C should be modified?

Bio-accumulation

Log Pow OECD TG 107, 117

- -Substance with Log Pow < 3.5 can be assessed as not highly bio-accumulative (except for ionic substances)
- -For ionic substances, CSCL applies Log Dow (The partition coefficient determined at pH 7)
- -Substance with Log Dow < 2.5 can be assessed as not highly bio-accumulative

BCF test OECD TG 305-I,II

- -Remaining degradation substances are considered for BCF study
- -Implementation of OECD 305-III is under discussion
- -BCF >5000: highly bio-accumulative, BCF <1000: not highly bio-accumulative
- -BCF: 1000-5000: factors (distribution, discharge rate) are considered for judgment
- -QSAR and Read-Across could be used but only in very limited conditions

Evaluation / Assessment Flow

Restriction, notification of volume or usage, etc.

Screening			ning	Strong (Eco-) Toxicity (Such as PNEC mg/L)				Weak
Assessment				1	2	3	4	Out of Class
_	Assessifient			Less than 0.001	0.001-0.01	0.01-0.1	0.1-1	>1
Class (exposure factors could be	applied)	1	> 10000 t/y	High Priority	High Priority	High Priority	High Priority	
	s could be	2	1000 – 10000 t/y	High Priority	High Priority	High Priority	Middle Priority	
	are factor	3	100 - 1000 t/y	High Priority	High Priority	Middle Priority	Middle Priority	Out of
	ss (exposi	4	10 - 100 t/y	High Priority	Middle Priority	Middle Priority	Low Priority	Class
	ure Clas	5	1 - 10 t/y	Middle Priority	Middle Priority	Low Priority	Low Priority	
	Exposure	Out of Class	Less than 1 t/y	Out of Class				

High Priority Chemicals are categorized as "Priority Assessment Chemicals"

Restriction, notification of volume or usage, etc.

Restriction, notification of volume or usage, etc.

Evaluation / Assessment Flow

Registration of Polymers

- -Registration through Polymer Flow Scheme (PFS) may be possible
- -If the criteria of Polymers of Low Concern (PLC) is met, the process can be shortened

	Polymers that pass PFS	Polymers meeting PLC
Assessment by experts (in the Chemical Councils)	Yes	No
Time of government procedure	Long (approx. 2-4 months)	Short (about 1month)
Listed in the Inventory	Listed	Not listed

-Polymer definition in CSCL

- Molecules are characterized by the sequence of one or more types of monomer units
- •The weight % of molecules containing three monomer units or above is 50% of the total weight or more
- •The weight % of any molecule of the same molecular weight is less than 50% of the total weight
- NAMW (Number Average of Molecular Weight) is 1000 or more

Polymer Flow Scheme (PFS)

Topics

1. What is Chemical Substance Control Law?

- 2. CSCL in Detail
 - -Safety Studies
 - -Risk Assessment
 - -Polymer Flow Scheme

3. Summary -in comparison with REACH-

Summary –in comparison with REACH-

	CSCL, Japan	REACH, EU		
Start	1973, recent update in 2011	2007 (came into force)		
Objectives	Environment and Human Health (long- term) via environmental exposure	Workers, Consumers and Environment		
	New chemicals (mainly >1 t/y)	New and existing chemicals (>1 t/y)		
Registration	No new notification required if the chemicals are already in the inventory	Registration required even if the same substances are already registered		
Number	1-10 t/y: 1-2 , >10 t/y: 1-8	1-10 t/y: approx. 20, >10 t/y: >20		
of Studies	Depending on the biodegradation result and tonnage	Depending on the tonnage and substance properties etc.		
Evaluation	Pre-market (Risk assessment in post-market)	Post-market (random) (IT automatic check in pre-market)		
Risk Assessment	All chemicals* (new and existing), tiered approach, leaded by authority	>10 t/y and classified substances, conducted by registrants		
Polymers**	Could be registered thought PFS	Exempted (Monomers have to be registered)		

^{*}Except for the candidates for Monitoring, or Class I specified Chemicals

^{**} The definition varies in each regulation

Thank you for your kind attention!!